This study evaluated the effect of incorporating silver nanoparticles (AgNPs) into conventional orthodontic adhesive on its antibacterial activity and the shear bond strength (SBS) to stainless steel orthodontic brackets. Thirty-four extracted premolars were randomly allocated into two groups (n = 17). Orthodontic adhesive (Transbond XT, 3M Unitek) was blended with AgNPs (50 nm, 0.3% w/w) to form a nano-adhesive. In order to bond stainless steel twin brackets (0.022-inch, American Orthodontics), Transbond XT (n = 17) and nano-adhesive (n = 17) were used in each group, respectively, after acid etching (37% phosphoric acid, 30 s) and rinsing with water (15 s). SBS and the adhesive remnant index (ARI) scores were recorded. Antibacterial activity against Streptococcus mutans in both groups after 24 h and 30 days was assessed (Disc agar diffusion test) and the inhibition zone diameter around each specimen was measured and recorded. Adding AgNPs significantly (p = 0.009) reduced the mean (SD) SBS in the nano-adhesive group [10.51(7.15) MPa] compared to Transbond XT [17.72(10.55) MPa]. The ARI scores on the Transbond XT and nano-adhesive showed no statistically significant difference (p = 0.322). Nano-adhesive with AgNPs showed significant antibacterial activity against Streptococcus mutans at 24 h and 30 days (p < 0.001). In both groups, no significant decline in the zones of inhibition was detected after 30 days (p = 0.907). The findings suggest that SBS decreased after incorporation of AgNPs [0.3% (w/w)], but was still above the recommended SBS of 5.9–7.8 MPa. The nano-adhesive showed significant antibacterial activity which did not change much after 30 days.
CITATION STYLE
Eslamian, L., Borzabadi-Farahani, A., Karimi, S., Saadat, S., & Badiee, M. R. (2020). Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study. Nanomaterials, 10(8), 1–8. https://doi.org/10.3390/nano10081466
Mendeley helps you to discover research relevant for your work.