Empathy is defined as the ability to vicariously experience others’ suffering (vicarious pain) or feeling their joy (vicarious reward). While most neuroimaging studies have focused on vicarious pain and describe similar neural responses during the observed and the personal negative affective involvement, only initial evidence has been reported for the neural responses to others’ rewards and positive empathy. Here, we propose a novel approach, based on the simultaneous recording of multi-subject EEG signals and exploiting the wavelet coherence decomposition to measure the temporal alignment between ERPs in a dyad of interacting subjects. We used the Third-Party Punishment (TPP) paradigm to elicit the personal and vicarious experiences. During a positive experience, we observed the simultaneous presence in both agents of the Late Positive Potential (LPP), an ERP component related to emotion processing, as well as the existence of an inter-subject ERPs synchronization in the related time window. Moreover, the amplitude of the LPP synchronization was modulated by the presence of a human-agent. Finally, the localized brain circuits subtending the ERP-synchronization correspond to key-regions of personal and vicarious reward. Our findings suggest that the temporal and spatial ERPs alignment might be a novel and direct proxy measure of empathy.
CITATION STYLE
Toppi, J., Siniatchkin, M., Vogel, P., Freitag, C. M., Astolfi, L., & Ciaramidaro, A. (2022). A novel approach to measure brain-to-brain spatial and temporal alignment during positive empathy. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18911-4
Mendeley helps you to discover research relevant for your work.