Pertumbuhan padi di daerah yang luas seringkali tidak ideal. Ini dapat disebabkan oleh faktor alam, jenis varietas padi, dan model perawatan yang digunakan. Ini juga akan mempengaruhi hasil panen. Luasnya lahan membuat petani sulit untuk memantau bagian yang tidak terjangkau. Seringkali pemantauan perkembangan padi dilakukan di tepi sawah tetapi tidak mencapai area tengah. Studi ini mengusulkan sistem pemantauan untuk pengembangan padi yang dapat menjangkau secara lebih luas dan memperkirakan hasil padi di setiap area lahan pertanian. Sistem ini menggunakan gambar udara untuk menjangkau area yang lebih luas dan kemudian memperkirakan produksi pertanian. Estimasi produksi dilakukan dengan mengelompokkan gambar kawasan pertanian menggunakan metode K-Means. Pengelompokan ini menggunakan parameter warna HSV dan tekstur Gabor sebagai fitur dari setiap bagian gambar. Hasilnya adalah segmen area padi berdasarkan pertumbuhannya. Jumlah segmen yang sesuai dengan usia Padi nyata akan menentukan nilai estimasi hasil. Penelitian menunjukkan bahwa tiga segmen pengembangan padi, dan memperkirakan produksi adalah 1.787 ton dengan perkiraan panen maksimum 1.924 ton dari data nyata 1,80 ton. Dan dengan skala kesalahan persentase rata-rata absolut 0,72% dan perbedaan 0,013 ton. Abstract Paddy growth in large areas is often not ideal. This can be caused by natural factors, types of rice varieties, and the treatment model used. This will also affect crop yields. The extent of land makes it difficult for farmers to monitor the unreachable part. Often monitoring of rice developments is done on the edge of the field but does not reach the middle area. This study proposes a monitoring system for rice development that can reach more broadly and estimate the yield of rice in every area of agriculture land. This system uses aerial images to reach a wider area and then estimates of agricultural production. Estimation of production is done by clustering images of agricultural areas using the K-Means method. This clustering uses HSV color parameters and Gabor textures as features of each part of the image. The result is a segment of the paddy area based on its growth. The number of segments corresponding to the age of the real Paddy will determine the estimated value of the yield. The research shows that three segments of rice development, and estimates the production is 1,787 tons with a maximum estimated harvest of 1,924 tons from the real data of 1, 80 tons. And with a mean absolute percentage error scale of 0.72% and a difference of 0.013 tons.
CITATION STYLE
Arifin, M. J., Basuki, A., & Dewantara, B. S. B. (2021). Segmentasi Pertumbuhan Padi berbasis Aerial Image menggunakan Fitur Warna dan Tekstur untuk Estimasi Produksi Hasil Panen. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 209. https://doi.org/10.25126/jtiik.0813438
Mendeley helps you to discover research relevant for your work.