Retinoid signaling in inner ear development: A "Goldilocks" phenomenon

45Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Retinoic acid (RA) is a biologically active derivative of vitamin A that is indispensable for inner ear development. The normal function of RA is achieved only at optimal homeostatic concentrations, with an excess or deficiency in RA leading to inner ear dysmorphogenesis. We present an overview of the role of RA in the developing mammalian inner ear, discussing both how and when RA may act to critically control a program of inner ear development. Molecular mechanisms of otic teratogenicity involving two members of the fibroblast growth factor family, FGF3 and FGF10, and their downstream targets, Dlx5 and Dlx6, are examined under conditions of both RA excess and deficiency. We term the effect of too little or too much RA on FGF/Dlx signaling a Goldilocks phenomenon. We demonstrate that in each case (RA excess, RA deficiency), RA can directly affect FGF3/FGF10 signaling within the otic epithelium, leading to downregulated expression of these essential signaling molecules, which in turn, leads to diminution in Dlx5/Dlx6 expression. Non-cell autonomous affects of the otic epithelium subsequently occur, altering transforming growth factor-beta (TGFβ) expression in the neighboring periotic mesenchyme and serving as a putative explanation for RA-mediated otic capsule defects. We conclude that RA coordinates inner ear morphogenesis by controlling an FGF/Dlx signaling cascade, whose perturbation by deviations in local retinoid concentrations can lead to inner ear dysmorphogenesis. © 2010 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Frenz, D. A., Liu, W., Cvekl, A., Xie, Q., Wassef, L., Quadro, L., … Shanske, A. (2010, December). Retinoid signaling in inner ear development: A “Goldilocks” phenomenon. American Journal of Medical Genetics, Part A. https://doi.org/10.1002/ajmg.a.33670

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free