Radish is an economically important root vegetable worldwide. In this study, the 217 cultivated radish accessions were collected and genotyped. To detect the genotypes of these accessions, a total of 24 structure variation (SV) markers distributed on nine chromosomes were employed to analyze genetic diversity and construct a core germplasm collection of radish. The results of polymorphism information content (PIC) indicated a good polymorphism of these SV markers. Population structure analysis and principal component analysis (PCA) results showed that the 217 radish accessions fell into three main populations (P1, P2, and P3). Genetic diversity analysis showed that these populations were highly associated with geographical distribution. The values of the fixation index (FST) indicated a high genetic diversity between P2 and P3, and a moderate genetic diversity between P1 and P2, and P1 and P3. Furthermore, the 43 core germplasm were exploited for creating cytoplasmic male sterility (CMS) lines and cultivating new radish varieties. The high genetic diversity of 217 radish germplasms will not only provide valuable resources for future genetic mapping and functional genomic research, but also facilitate core germplasm utilization and the molecular breeding of radish.
CITATION STYLE
Li, X., Cui, L., Zhang, L., Huang, Y., Zhang, S., Chen, W., … Yan, C. (2023). Genetic Diversity Analysis and Core Germplasm Collection Construction of Radish Cultivars Based on Structure Variation Markers. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032554
Mendeley helps you to discover research relevant for your work.