With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) have become an essential detection technology to protect data integrity and system availability against such attacks. NIDS is one of the most well-known areas of machine learning software in the security field, with machine learni ng algorithms constantly being developed to improve performance. This research focuses on detecting abnormalities in societal infiltration using the hyperparameters optimization XGBoost (HO-XGB) algorithm with the Communications Security Establishment-The Canadian Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-IDS2018) dataset to get the best potential results. When compared to typical machine learning methods published in the literature, HO-XGB outperforms them. The study shows that XGBoost outperforms other detection algorithms. We refined the HO-XGB model's hyperparameters, which included learning_rate, subsample, max_leaves, max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. The experimental findings reveal that HO-XGB1 outperforms multiple parameter settings for intrusion detection, effectively optimizing XGBoost's hyperparameters.
CITATION STYLE
Chimphlee, W., & Chimphlee, S. (2024). Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset. IAES International Journal of Artificial Intelligence, 13(1), 817–826. https://doi.org/10.11591/ijai.v13.i1.pp817-826
Mendeley helps you to discover research relevant for your work.