For some two-player games (e.g. Go), no accurate and inexpensive heuristic is known for evaluating leaves of a search tree. For other games (e.g. chess), a heuristic is known (sum of piece values). For other games (e.g. Hex), only a local heuristic — one that compares children reliably, but non-siblings poorly — is known (cell voltage drop in the Shannon/Anshelevich electric circuit model). In this paper we introduce a search algorithm for a two-player perfect information game with a reasonable local heuristic. Sibling Conspiracy Number Search (SCNS) is an anytime best-first version of Conspiracy Number Search based not on evaluation of leaf states of the search tree, but — for each node — on relative evaluation scores of all children of that node. SCNS refines CNS search value intervals, converging to Proof Number Search. SCNS is a good framework for a game player. We tested SCNS in the domain of Hex, with promising results. We implemented an 11-by-11 SCNS Hex bot, DeepHex. We competed DeepHex against current Hex bot champion MoHex, a Monte-Carlo Tree Search player, and previous Hex bot champion Wolve, an Alpha-Beta Search player. DeepHex widely outperforms Wolve at all time levels, and narrowly outperforms MoHex once time reaches 4min/move.
CITATION STYLE
Pawlewicz, J., & Hayward, R. (2015). Sibling Conspiracy Number Search. In Proceedings of the 8th Annual Symposium on Combinatorial Search, SoCS 2015 (Vol. 2015-January, pp. 105–112). AAAI press. https://doi.org/10.1609/socs.v6i1.18358
Mendeley helps you to discover research relevant for your work.