A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics

148Citations
Citations of this article
312Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Threads, traditionally used in the apparel industry, have recently emerged as a promising material for the creation of tissue constructs and biomedical implants for organ replacement and repair. The wicking property and flexibility of threads also make them promising candidates for the creation of three-dimensional (3D) microfluidic circuits. In this paper, we report on thread-based microfluidic networks that interface intimately with biological tissues in three dimensions. We have also developed a suite of physical and chemical sensors integrated with microfluidic networks to monitor physiochemical tissue properties, all made from thread, for direct integration with tissues toward the realization of a thread-based diagnostic device (TDD) platform. The physical and chemical sensors are fabricated from nanomaterial-infused conductive threads and are connected to electronic circuitry using thread-based flexible interconnects for readout, signal conditioning, and wireless transmission. To demonstrate the suite of integrated sensors, we utilized TDD platforms to measure strain, as well as gastric and subcutaneous pH in vitro and in vivo.

Cite

CITATION STYLE

APA

Mostafalu, P., Akbari, M., Alberti, K. A., Xu, Q., Khademhosseini, A., & Sonkusale, S. R. (2016). A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsystems and Nanoengineering, 2. https://doi.org/10.1038/micronano.2016.39

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free