A transient expression system using onion epidermal cells was used to investigate domains of the Tobacco mosaic virus (TMV) 126-kDa replicase protein involved in cellular localization. Initially, a nuclear localization signal (NLS), identified within the amino-terminus of the 126-kDa protein, was investigated for its functionality using fusion constructs containing the green fluorescent protein (GFP). Fusion of the amino-terminal 70 amino acids of the 126-kDa protein, containing the NLS, to a β-glucuronidase-GFP open reading frame (ORF), directed the accumulation of fluorescence to the nucleus. In contrast, similar constructs lacking the NLS or containing a mutated NLS sequence failed to accumulate within the nucleus. Additional investigations using GFP fusion constructs containing the first 178 or 388 amino acids of the 126-kDa protein also displayed nuclear localization. However, fusion constructs encoding the first 781 amino acids or the entire 126-kDa ORF did not accumulate within the nucleus but instead associated with the endoplasmic reticulum (ER), forming spot-like inclusions. Thus, a dominant ER association domain exists between amino acids 388 and 781 of the 126-kDa protein. Interestingly, a full-length 126-kDa GFP fusion construct encoding a nonfunctional NLS mutation also localized to the ER but did not form inclusions. Furthermore, a TMV mutant containing the same nonfunctional NLS mutation failed to replicate in protoplasts. Together these findings suggest that both the NLS and the ER retention domain contribute to the functional localization of the 126-kDa protein. © 2002 Elsevier Science (USA).
CITATION STYLE
Dos Reis Figueira, A., Golem, S., Goregaoker, S. P., & Culver, J. N. (2002). A nuclear localization signal and a membrane association domain contribute to the cellular localization of the Tobacco mosaic virus 126-kDa replicase protein. Virology, 301(1), 81–89. https://doi.org/10.1006/viro.2002.1560
Mendeley helps you to discover research relevant for your work.