Skip to content

Making communities show respect for order

N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

In this work we give a community detection algorithm in which the communities both respects the intrinsic order of a directed acyclic graph and also finds similar nodes. We take inspiration from classic similarity measures of bibliometrics, used to assess how similar two publications are, based on their relative citation patterns. We study the algorithm’s performance and antichain properties in artificial models and in real networks, such as citation graphs and food webs. We show how well this partitioning algorithm distinguishes and groups together nodes of the same origin (in a citation network, the origin is a topic or a research field). We make the comparison between our partitioning algorithm and standard hierarchical layering tools as well as community detection methods. We show that our algorithm produces different communities from standard layering algorithms.

Cite

CITATION STYLE

APA

Vasiliauskaite, V., & Evans, T. S. (2019, August 30). Making communities show respect for order. ArXiv. arXiv. https://doi.org/10.1007/s41109-020-00255-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free