Rationale: Sugars are key molecules of life but challenging to detect via electrospray ionization mass spectrometry (ESI-MS). Unfortunately, sugars are challenging analytes for mass spectrometric methods due to their high gas-phase deprotonation energies and low gas-phase proton affinities which make them difficult to ionize in high abundance for MS detection. Methods: Hydrogen-bond interactions in H2PO4−–saccharide anionic systems were studied both experimentally (via electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, ESI-FT-ICR-MS) and computationally by several sophisticated density-functional theoretical methods (DFT and DFT-D3). Results: The H2PO4− dopant boosts the detection of sugars up to 51-times in the case of sucrose and up to 263-times for glucose (at 0.1 ppm concentration level). H2PO4− binds toward sugar molecules with noticeably more hydrogen bonds than the established dopant chloride Cl− does, with increasing binding energies in the order: Monosaccharides < Trisaccharides < Disaccharides. Analysis of a complex oak plant sample revealed that NH4H2PO4 specifically labeled a diverse set of sugar-type plant metabolites in the form of [M + H2PO4]− complexes. Conclusions: We reveal the mechanism of interaction of H2PO4− with different sugars and glycosylated organic compounds, which significantly enhances their ionization in mass spectrometry. A computational and experimental investigation is presented. A strong correlation between the MS signal intensities of detected [M + H2PO4]− anions of different saccharides and their calculated dissociation enthalpies was revealed. Thus, the variation in MS signal intensities can be very well described to a large extent by the variation in calculated saccharide affinities toward the H2PO4− dopant anion, showing that DFT-D3 can very well describe experimental FT-ICR-MS observations.
CITATION STYLE
Ruf, A., Kanawati, B., & Schmitt-Kopplin, P. (2022). Dihydrogen phosphate anion boosts the detection of sugars in electrospray ionization mass spectrometry: A combined experimental and computational investigation. Rapid Communications in Mass Spectrometry, 36(11). https://doi.org/10.1002/rcm.9283
Mendeley helps you to discover research relevant for your work.