Cofactor imbalance impedes xylose assimilation in Saccharomyces cerevisiae that has been metabolically engineered for xylose utilization. To improve cofactor use, we modified ammonia assimilation in recombinant S. cerevisiae by deleting GDH1, which encodes an NADPH-dependent glutamate dehydrogenase, and by over-expressing either GDH2, which encodes an NADH-dependent glutamate dehydrogenase, or GLT1 and GLN1, which encode the GS-GOGAT complex. Overexpression of GDH2 increased ethanol yield from 0.43 to 0.51 mol of carbon (Cmol) Cmol-1, mainly by reducing xylitol excretion by 44%. Overexpression of the GS-GOGAT complex did not improve conversion of xylose to ethanol during batch cultivation, but it increased ethanol yield by 16% in carbon-limited continuous cultivation at a low dilution rate.
CITATION STYLE
Roca, C., Nielsen, J., & Olsson, L. (2003). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Applied and Environmental Microbiology, 69(8), 4732–4736. https://doi.org/10.1128/AEM.69.8.4732-4736.2003
Mendeley helps you to discover research relevant for your work.