In this study, we demonstrated that the choice of precursor has a strong effect on the reduction of nitrate (NO3-) using zero-valent copper (Cu0) synthesized by sodium borohydride (NaBH4). Different precursors: CuSO4, CuO, Cu2O, Cu powder, and Cu mesh were used to reduce NO3- at 677 mg-N/L under the reducing conditions of NaBH4. Compared with the prehydrolyzed samples, those prepared without prehydrolysis exhibited lower reduction rates, longer times and higher concentrations of nitrite (NO2-) intermediate. It was found that one-time addition of NaBH4 resulted in higher reduction rate and less NO2- intermediate than two-step addition. Results showed that Cu0 from CuSO4 possessed the smallest particle size (890.9 nm), highest surface area (26.0 m2/g), and highest reaction rate (0.166 min-1). Values of pseudo-first-order constant (kobs) were in the order: CuSO4 > CuO >Cu2O>Cu powder >Cu mesh. However, values of surface area-normalized reaction rate (kSA) were approximately equal. It was proposed that NO3- was reduced to NO2- on Cu0, and then converted to NH4+ and N2, respectively; H2 generated from both NaBH4 hydration and Cu (II) reduction contributed to NO3- reduction as well.
CITATION STYLE
Belay, T. A., Lin, C. Y., Hsiao, H. M., Chang, M. F., & Liu, J. C. (2018). Effect of precursor type on the reduction of concentrated nitrate using zero-valent copper and sodium borohydride. Water Science and Technology, 77(1), 114–122. https://doi.org/10.2166/wst.2017.525
Mendeley helps you to discover research relevant for your work.