Prediction of Oxide Phases Formed upon Internal Oxidation of Advanced High-Strength Steels

11Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effect of Cr on the oxidation of Fe–Mn-based steels during isothermal annealing at different dew points was investigated. The Fe–Mn–Cr–(Si) phase diagrams for oxidizing environments were computed to predict the oxide phases. Various Fe–Mn steels with different concentrations of Cr and Si were annealed at 950 °C in a gas mixture of Ar or N2 with 5 vol% H2 and dew points ranging from − 45 to 10 °C. The identified oxide species after annealing match with those predicted based on the phase diagrams. (Mn,Fe)O is the only oxide phase formed during annealing of Fe–Mn binary steel alloys. Adding Cr leads to the formation of (Mn,Cr,Fe)3O4 spinel. The dissociation oxygen partial pressure of (Mn,Cr,Fe)3O4 in the Fe–Mn–Cr steels is lower than that of (Mn,Fe)O. The Si in the steels results in the formation (Mn,Fe)2SiO4, and increasing the Si concentration suppresses the formation of (Mn,Cr,Fe)3O4 and (Mn,Fe)O during annealing.

Cite

CITATION STYLE

APA

Mao, W., Hendrikx, R. W. A., & Sloof, W. G. (2018). Prediction of Oxide Phases Formed upon Internal Oxidation of Advanced High-Strength Steels. Oxidation of Metals, 89(5–6), 531–549. https://doi.org/10.1007/s11085-017-9815-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free