Background and Purpose: Enteric neurogenic/inflammation contributes to bowel dysmotility in obesity. We examined the role of NLRP3 in colonic neuromuscular dysfunctions in mice with high-fat diet (HFD)-induced obesity. Experimental Approach: Wild-type C57BL/6J and NLRP3-KO (Nlrp3−/−) mice were fed with HFD or standard diet for 8 weeks. The activation of inflammasome pathways in colonic tissues from obese mice was assessed. The role of NLRP3 in in vivo colonic transit and in vitro tachykininergic contractions and substance P distribution was evaluated. The effect of substance P on NLRP3 signalling was tested in cultured cells. Key Results: HFD mice displayed increased body and epididymal fat weight, cholesterol levels, plasma resistin levels and plasma and colonic IL-1β levels, colonic inflammasome adaptor protein apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC) and caspase-1 mRNA expression and ASC immunopositivity in macrophages. Colonic tachykininergic contractions were enhanced in HFD mice. HFD NLRP3−/− mice developed lower increase in body and epididymal fat weight, cholesterol levels, systemic and bowel inflammation. In HFD Nlrp3−/− mice, the functional alterations of tachykinergic pathways and faecal output were normalized. In THP-1 cells, substance P promoted IL-1β release. This effect was inhibited upon incubation with caspase-1 inhibitor or NK1 antagonist and not observed in ASC−/− cells. Conclusion and Implications: In obesity, NLRP3 regulates an interplay between the shaping of enteric immune/inflammatory responses and the activation of substance P/NK1 pathways underlying the onset of colonic dysmotility. Identifying NLRP3 as a therapeutic target for the treatment of bowel symptoms related to obesity.
CITATION STYLE
Pellegrini, C., Fornai, M., Benvenuti, L., Colucci, R., Caputi, V., Palazon-Riquelme, P., … Antonioli, L. (2021). NLRP3 at the crossroads between immune/inflammatory responses and enteric neuroplastic remodelling in a mouse model of diet-induced obesity. British Journal of Pharmacology, 178(19), 3924–3942. https://doi.org/10.1111/bph.15532
Mendeley helps you to discover research relevant for your work.