Background: Ciprofloxacin (CIP), an important broad-spectrum fluoroquinolone antibiotic, was often used as a template molecule for the preparation of imprinted materials. In this study, methacrylic acid and 2-vinylpyridine were employed for the first time as dual functional monomers for synthesizing ciprofloxacin imprinted polymers. Methods: The chemical and physicochemical properties of synthesized polymers were characterized using Fourier transform-infrared spectroscopy, thermogravimetric analysis-differential scanning calorimetry, scanning electron microscopy, and nitrogen adsorption-desorption isotherm. The adsorption properties of ciprofloxacin onto synthesized polymers were determined by batch experiments. The extraction performances were studied using the solid phase extraction and HPCL-UV method. Results: The molecularly imprinted polymer synthesized with dual functional monomers showed a higher adsorption capacity and selectivity toward the template molecule. The adsorbed amounts of ciprofloxacin onto the imprinted and non-imprinted polymer were 2.40 and 1.45 mg g−1, respectively. Furthermore, the imprinted polymers were employed as a selective adsorbent for the solid phase extraction of ciprofloxacin in aqueous solutions with the recovery of 105% and relative standard deviation of 7.9%. This work provides an alternative approach for designing a new adsorbent with high adsorption capacity and good extraction performance for highly polar template molecules.
CITATION STYLE
Thach, U. D., Thi, H. H. N., Pham, T. D., Mai, H. D., & Nhu-Trang, T. T. (2021). Synergetic effect of dual functional monomers in molecularly imprinted polymer preparation for selective solid phase extraction of ciprofloxacin. Polymers, 13(16). https://doi.org/10.3390/polym13162788
Mendeley helps you to discover research relevant for your work.