Quinolino[2,1-b]quinazolines 3 and 4, pyrrolo[2,1-b]quinazoline 5 and various substituted 2-(4-chlorostyryl)quinazoline derivatives including: 4-amino derivative 8, 4-hydrazino derivative 9, thiourea derivative 10, thiosemicarbazide derivative 19, 4-benzylidene hydrazinyl derivative 21, 4-amino thiazolidene derivatives 11, 12, 13, 22, imidazoquinazolines 15, 16, quinazolinium chloride 14, triazino[4,3-c]quinazolines 17, 18, tetrazino[1,6-c]quinazoline 20, 4-amino azetidinyl derivative 23, triazolo[4,3-c]quinazoline 24, 4-amino substituted quinazolines 25, 26, 27, 29 and quinazolino quinazoline 28 were synthesized through different chemical reactions. The obtained compounds were evaluated for their in vitro antitumor activity against HEPG2 and MCF-7 cell lines compared to the reference drug (doxorubicin). Compounds 18, 19, 20, 23 and 24 were found to be the most active against both cell lines exhibiting IC50 values ranging from 10.82-29.46 μM/L and 7.09-31.85 μM/L against Hep-G2 and MCF-7 cell lines, respectively, in addition to docking study of these five compounds against thymidylate synthase and dihydrofolate reductase enzymes active sites.
CITATION STYLE
Helali, A. Y. H., Sarg, M. T. M., Koraa, M. M. S., & El-Zoghbi, M. S. F. (2014). Utility of 2-Methyl-quinazolin-4(3H)-one in the Synthesis of Heterocyclic Compounds with Anticancer Activity. Open Journal of Medicinal Chemistry, 04(01), 12–37. https://doi.org/10.4236/ojmc.2014.41002
Mendeley helps you to discover research relevant for your work.