Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient

11Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Natural eco-friendly materials are recently employed in products to replace synthetic materials due to their superior benefits in preserving the environment. The herb Coccinia grandis is widely distributed in continents like Asia and Africa and used traditionally to treat fever, leprosy, asthma, jaundice, and bronchitis. Mucilage of Coccinia grandis was accordingly extracted, isolated by a maceration technique, and precipitated. The mucilage was evaluated for its physicochemical, binding, and disintegrant properties in tablets using paracetamol as a model drug. The crucial physicochemical properties such as flow properties, solubility, swelling index, loss on drying, viscosity, pH, microbial load, cytotoxicity was evaluated and the compatibility was analyzed using sophisticated instrumental methods (TGA, DTA, DSC, and FTIR). The binding properties of the mucilage was used at three different concentrations and compared with starch and PVP as examples of standard binders. The disintegrant properties of mucilage were used at two different concentrations and compared with standard disintegrants MCCP, SSG, and CCS. The tablets were punched and evaluated for their hardness, friability, assay, disintegration time, in vitro dissolution profiles. In vitro cytotoxicity studies of the mucilage were performed in a human embryonic kidney (HEK) cell line. The outcome of the study indicated that the mucilage had good performance compared with starch and PVP. Further, the mucilage acts as a better disintegrant than MCCP, SSG and CCS for paracetamol tablets. Use of a concentration of 3% or less demonstrated the ability of the mucilage to act as a super disintegrating agent and showed faster disintegration and dissolution, which makes it as an attractive, promising disintegrant in formulating solid dosage forms to improve the therapeutic efficacy and patient compliance. Moreover, the in vitro cytotoxicity evaluation results demonstrated that the mucilage is non-cytotoxic to human cells and is safe.

Cite

CITATION STYLE

APA

Ilango, K. B., Gowthaman, S., Seramaan, K. I., Chidambaram, K., Bayan, M. F., Rahamathulla, M., & Balakumar, C. (2022). Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient. Polymers, 14(1). https://doi.org/10.3390/polym14010215

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free