Soil salinity and sodicity is a potential soil risk and a major reason for reduced soil productivity in many areas of the world. This study was conducted to investigate the effect of different biochar raw materials and the effects of acid-modified biochar on alleviating abiotic stresses from saline-sodic soil and its effect on biochemical properties of maize and wheat productivity. A field experiment was conducted as a randomized complete block design during the seasons of 2019/2020, with five treatments and three replicates: untreated soil (CK), rice straw biochar (RSB), cotton stalk biochar (CSB), rice straw-modified biochar (RSMB), and cotton stalk-modified biochar (CSMB). FTIR and X-ray diffraction patterns indicated that acid modification of biochar has potential effects for improving its properties via porous functions, surface functional groups and mineral compositions. The CSMB treatment enhanced the soil’s physical and chemical properties and porosity via EC, ESP, CEC, SOC and BD by 28.79%, 20.95%, 11.49%, 9.09%, 11.51% and 12.68% in the upper 0–20 cm, respectively, compared to the initial properties after the second season. Soil-available N, P and K increased with modified biochar treatments compared to original biochar types. Data showed increases in grain/straw yield with CSMB amendments by 34.15% and 29.82% for maize and 25.11% and 15.03% for wheat plants, respectively, compared to the control. Total N, P and K contents in both maize and wheat plants increased significantly with biochar application. CSMB recorded the highest accumulations of proline contents and SOD, POD and CAT antioxidant enzyme activity. These results suggest that the acid-modified biochar can be considered an eco-friendly, cheaper and effective choice in alleviating abiotic stresses from saline-sodic soil and positively effects maize and wheat productivity.
CITATION STYLE
El-Sharkawy, M., El-Naggar, A. H., Al-Huqail, A. A., & Ghoneim, A. M. (2022). Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14138190
Mendeley helps you to discover research relevant for your work.