Gan power devices: Current status and future challenges

Citations of this article
Mendeley users who have this article in their library.


The status and challenges in the development of GaN power devices are reviewed. At present, normally-off gate injection transistors (GITs) on Si are commercially available. The updated structure known as a hybrid-drain-embedded GIT provides superior reliability that contributes to the stable operation of compact power switching systems with high efficiency. The fabricated vertical GaN transistor on GaN as a future challenge demonstrates extremely low specific on-state resistance and high breakdown voltage. Metal-insulator-semiconductor-gate GaN transistor is also a technical challenge for faster switching, since it would give greater freedom of gate driving as a result of both high threshold voltage and widened gate voltage swing. Normally-off operation free from hysteresis in the current-voltage characteristics is confirmed in a recessed-gate AlGaN/GaN heterojunction field effect transistor using AlON as a gate insulator. Fast switching characteristics are experimentally confirmed for both of the newly developed GaN devices, indicating their great potential for practical use.




Ueda, T. (2019). Gan power devices: Current status and future challenges. Japanese Journal of Applied Physics. Institute of Physics Publishing.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free