Get full text


Prenatal exposure to maternal stress and depression has been identified as a risk factor for adverse behavioral and neurodevelopmental outcomes in early childhood. However, the molecular mechanisms through which maternal psychopathology shapes offspring development remain poorly understood. We applied transcriptome-wide screens to 149 umbilical cord blood samples from neonates born to mothers with posttraumatic stress disorder (PTSD; n = 20), depression (n = 31) and PTSD with comorbid depression (n = 13), compared to carefully matched trauma exposed controls (n = 23) and healthy mothers (n = 62). Analyses by maternal diagnoses revealed a clear pattern of gene expression signatures distinguishing neonates born to mothers with a history of psychopathology from those without. Co-expression network analysis identified distinct gene expression perturbations across maternal diagnoses, including two depression-related modules implicated in axon-guidance and mRNA stability, as well as two PTSD-related modules implicated in TNF signaling and cellular response to stress. Notably, these disease-related modules were enriched with brain-expressed genes and genetic risk loci for autism spectrum disorder and schizophrenia, which may imply a causal role for impaired developmental outcomes. These molecular alterations preceded changes in clinical measures at twenty-four months, including reductions in cognitive and socio-emotional outcomes in affected infants. Collectively, these findings indicate that prenatal exposure to maternal psychological distress induces neuronal, immunological and behavioral abnormalities in affected offspring and support the search for early biomarkers of exposures to adverse in utero environments and the classification of children at risk for impaired development.




M.S., B., A.P., W., N., K., K.A., D., M., N., H.J., Z., … D.J., S. (2018). Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes. Brain, Behavior, and Immunity, 73, 320–330. LK  -

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free