Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture

Citations of this article
Mendeley users who have this article in their library.


Objective: When primary chondrocytes are cultured in monolayer, they undergo dedifferentiation during which they lose their phenotype and their capacity to form cartilage. Dedifferentiation is an obstacle for cell therapy for cartilage degeneration. In this study, we aimed to systemically evaluate the changes in gene expression during dedifferentiation of human articular chondrocytes to identify underlying mechanisms. Methods: RNA was isolated from monolayer-cultured primary human articular chondrocytes at serial passages. Gene expression was analyzed by microarray. Based on the microarray analysis, relevant genes and pathways were identified. Their functions in chondrocyte dedifferentiation were further investigated. Results: In vitro expanded human chondrocytes showed progressive changes in gene expression. Strikingly, an overall decrease in total gene expression was detected, which was both gradual and cumulative. DNA methylation was in part responsible for the expression downregulation of a number of genes. Genes involved in many pathways such as the extracellular-signal-regulated kinase (ERK) and Bone morphogenetic protein (BMP) pathways exhibited significant changes in expression. Inhibition of ERK pathway did not show dramatic effects in counteracting dedifferentiation process. BMP-2 was able to decelerate the dedifferentiation and reinforce the maintenance of chondrocyte phenotype in monolayer culture. Conclusion: Our study not only improves our knowledge of the intricate signaling network regulating maintenance of chondrocyte phenotype, but also contributes to improved chondrocyte expansion and chondrogenic performance for cell therapy. © 2013 Osteoarthritis Research Society International.




Ma, B., Leijten, J. C. H., Wu, L., Kip, M., van Blitterswijk, C. A., Post, J. N., & Karperien, M. (2013). Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis and Cartilage, 21(4), 599–603.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free