Genomic characterization of the novel aeromonas hydrophila phage ahp1 suggests the derivation of a new subgroup from phiKMV-Like family

6Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Aeromonas hydrophila is an opportunistic pathogenic bacterium causing diseases in human and fish. The emergence of multidrug-resistant A. hydrophila isolates has been increasing in recent years. In this study, we have isolated a novel virulent podophage of A. hydrophila, designated as Ahp1, from waste water. Ahp1 has a rapid adsorption (96% adsorbed in 2 min), a latent period of 15 min, and a burst size of 112 PFU per infected cell. At least eighteen Ahp1 virion proteins were visualized in SDS-polyacrylamide gel electrophoresis, with a 36-kDa protein being the predicted major capsid protein. Genome analysis of Ahp1 revealed a linear doubled-stranded DNA genome of 42,167 bp with a G + C content of 58.8%. The genome encodes 46 putative open reading frames, 5 putative phage promoters, and 3 transcriptional terminators. Based on high degrees of similarity in overall genome organization and among most of the corresponding ORFs, as well as phylogenetic relatedness among their DNAP, RNAP and major capsid proteins, we propose a new subgroup, designated Ahp1-like subgroup. This subgroup contains Ahp1 and members previously belonging to phiKMV-like subgroup, phiAS7, phi80-18, GAP227, phiR8-01, and ISAO8. Since Ahp1 has a narrow host range, for effective phage therapy, different phages are needed for preparation of cocktails that are capable of killing the heterogeneous A. hydrophila strains.

Cite

CITATION STYLE

APA

Wang, J. B., Lin, N. T., Tseng, Y. H., & Weng, S. F. (2016). Genomic characterization of the novel aeromonas hydrophila phage ahp1 suggests the derivation of a new subgroup from phiKMV-Like family. PLoS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162060

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free