Geometric consistency checks for kNN based image classification relying on local features

  • Amato G
  • Falchi F
  • Gennaro C
10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Applications of image content recognition, as for instance landmark recognition, can be obtained by using techniques of kNN classifications based on the use of local image features, such as SIFT or SURF. Quality of image classification can be improved by defining geometric consistency check rules based on space transformations of the scene depicted in images. However, this prevents the use of state of the art access methods for similarity searching and sequential scan of the images in the training sets has to be executed in order to perform classification. In this paper we propose a technique that allows one to use access methods for similarity searching, such as those exploiting metric space properties, in order to perform kNN classification with geometric consistency checks. We will see that the proposed approach, in addition to offer an obvious efficiency improvement, surprisingly offers also an improvement of the effectiveness of the classification. Copyright © 2010 ACM.

Cite

CITATION STYLE

APA

Amato, G., Falchi, F., & Gennaro, C. (2011). Geometric consistency checks for kNN based image classification relying on local features. In Proceedings of the Fourth International Conference on SImilarity Search and APplications - SISAP ’11 (p. 81). New York, New York, USA: ACM Press. https://doi.org/10.1145/1995412.1995428

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free