GWmodel : An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models

  • Gollini I
  • Lu B
  • Charlton M
  • et al.
N/ACitations
Citations of this article
114Readers
Mendeley users who have this article in their library.

Abstract

Spatial statistics is a growing discipline providing important analytical techniques in a wide range of disciplines in the natural and social sciences. In the R package GW model, we present techniques from a particular branch of spatial statistics, termed geographically weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localized calibration provides a better description. The approach uses a moving window weighting technique, where localized models are found at target locations. Outputs are mapped to provide a useful exploratory tool into the nature of the data spatial heterogeneity. Currently, GW model includes functions for: GW summary statistics, GW principal components analysis, GW regression, and GW discriminant analysis; some of which are provided in basic and robust forms.

Cite

CITATION STYLE

APA

Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). GWmodel : An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models . Journal of Statistical Software, 63(17). https://doi.org/10.18637/jss.v063.i17

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free