Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

Citations of this article
Mendeley users who have this article in their library.
Get full text


In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant technologies. © 2010 Elsevier B.V. All rights reserved.




Guan, X., Li, L., Li, G., Fu, Z., Zheng, J., & Yan, T. (2011). Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance. Journal of Alloys and Compounds, 509(7), 3367–3374. https://doi.org/10.1016/j.jallcom.2010.12.067

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free