The higher-order derivatives of spectral functions

15Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

We are interested in higher-order derivatives of functions of the eigenvalues of real symmetric matrices with respect to the matrix argument. We describe a formula for the k-th derivative of such functions in two general cases. The first case concerns the derivatives of the composition of an arbitrary (not necessarily symmetric) k-times differentiable function with the eigenvalues of symmetric matrices at a symmetric matrix with distinct eigenvalues. The second case describes the derivatives of the composition of a k-times differentiable separable symmetric function with the eigenvalues of symmetric matrices at an arbitrary symmetric matrix. We show that the formula significantly simplifies when the separable symmetric function is k-times continuously differentiable. As an application of the developed techniques, we re-derive the formula for the Hessian of a general spectral function at an arbitrary symmetric matrix. The new tools lead to a shorter, cleaner derivation than the original one. To make the exposition as self contained as possible, we have included the necessary background results and definitions. Proofs of the intermediate technical results are collected in the appendices. © 2007 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Sendov, H. S. (2007). The higher-order derivatives of spectral functions. Linear Algebra and Its Applications, 424(1 SPEC. ISS.), 240–281. https://doi.org/10.1016/j.laa.2006.12.013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free