Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Polymer Coated Cathode for the Microbial Electrosynthesis of Acetate From Carbon Dioxide

  • Aryal N
  • Tremblay P
  • Xu M
  • et al.
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Microbial electrosynthesis (MES) is a bioelectrochemical technology developed for the conversion of carbon dioxide and electric energy into multicarbon chemicals of interest. As with other biotechnologies, achieving high production rate is a prerequisite for scaling up. In this study, we report the development of a novel cathode for MES, which was fabricated by coating carbon cloth with conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) polymer. Sporomusa ovata-driven MES reactors equipped with PEDOT:PSS-carbon cloth cathodes produced 252.5 ± 23.6 mmol d-1 acetate per m2 of electrode over a period of 14 days, which was 9.3 fold higher than the production rate observed with uncoated carbon cloth cathodes. Concomitantly, current density was increased to -3.2 ± 0.8 A m-2, which was 10.7-fold higher than the untreated cathode. The coulombic efficiency with the PEDOT: PSS-carbon cloth cathodes was 78.6 ± 5.6%. Confocal laser scanning microscopy and scanning electron microscopy showed denser bacterial population on the PEDOT:PSS-carbon cloth cathodes. This suggested that PEDOT:PSS is more suitable for colonization by S. ovata during the bioelectrochemical process. The results demonstrated that PEDOT: PSS is a promising cathode material for MES.

Cite

CITATION STYLE

APA

Aryal, N., Tremblay, P.-L., Xu, M., Daugaard, A. E., & Zhang, T. (2018). Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Polymer Coated Cathode for the Microbial Electrosynthesis of Acetate From Carbon Dioxide. Frontiers in Energy Research, 6. https://doi.org/10.3389/fenrg.2018.00072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free