Hypercyclic convolution operators on Fréchet spaces of analytic functions

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Carando, D., Dimant, V., & Muro, S. (2007). Hypercyclic convolution operators on Fréchet spaces of analytic functions. Journal of Mathematical Analysis and Applications, 336(2), 1324–1340. https://doi.org/10.1016/j.jmaa.2007.03.055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free