Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: A computational study

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au13, d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol-1. At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol-1 relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au38, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold-palladium alloys. © the Partner Organisations 2014.

Cite

CITATION STYLE

APA

Zeinalipour-Yazdi, C. D., Willock, D. J., Machado, A., Wilson, K., & Lee, A. F. (2014). Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: A computational study. Physical Chemistry Chemical Physics, 16(23), 11202–11210. https://doi.org/10.1039/c3cp53691b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free