Influence of thermal-decomposition temperatures on structures and properties of V2O5 as cathode materials for lithium ion battery

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Submicron spherical V2O5 particles with a uniform size and a lower crystallinity were successfully synthesized by a chemical precipitation-thermal decomposition technique using the commercial V2O5 powders as starting material. The crystal structure and grain morphology of samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Electrochemical testing such as discharge-charge cycling (CD) and cyclic voltammetry (CV) were employed in evaluating their electrochemical properties as cathode materials for lithium ion battery. Results reveal that the crystallinity and crystalline size of V2O5 particles increased when the thermal-decomposition temperature increased from 400°C to 500°C, and their adhesiveness was also synchronously increased. This indicate that the thermal-decomposition temperature palyed a significant influence on electrochemical properties of V2O5 cathodes. The V2O5 sample obtained at 400°C delivered not only a high initial discharge capacity of 330mAhg-1 and also the good cycle stability during 50 cycles due to its higher values of α in crystal structure and better dispersity in grain morphology.

Cite

CITATION STYLE

APA

Chen, Y., Chen, C., Chen, W., Liu, H., & Zhu, J. (2015). Influence of thermal-decomposition temperatures on structures and properties of V2O5 as cathode materials for lithium ion battery. Progress in Natural Science: Materials International, 25(1), 42–46. https://doi.org/10.1016/j.pnsc.2015.01.015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free