Insights into the micromechanical properties of the metaphase spindle

Citations of this article
Mendeley users who have this article in their library.


The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement. PaperFlick: © 2011 Elsevier Inc.




Shimamoto, Y., Maeda, Y. T., Ishiwata, S., Libchaber, A. J., & Kapoor, T. M. (2011). Insights into the micromechanical properties of the metaphase spindle. Cell, 145(7), 1062–1074.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free