An Intelligent Paper Currency Recognition System

Citations of this article
Mendeley users who have this article in their library.


Paper currency recognition (PCR) is an important area of pattern recognition. A system for the recognition of paper currency is one kind of intelligent system which is a very important need of the current automation systems in the modern world of today. It has various potential applications including electronic banking, currency monitoring systems, money exchange machines, etc. This paper proposes an automatic paper currency recognition system for paper currency. A method of recognizing paper currencies has been introduced. This is based on interesting features and correlation between images. It uses Radial Basis Function Network for classification. The method uses the case of Saudi Arabian paper currency as a model. The method is quite reasonable in terms of accuracy. The system deals with 110 images, 10 of which are tilted with an angle less than 15o. The rest of the currency images consist of mixed including noisy and normal images 50 each. It uses fourth series (1984-2007) of currency issued by Saudi Arabian Monetary Agency (SAMA) as a model currency under consideration. The system produces accuracy of recognition as 95.37%, 91.65%, and 87.5%, for the Normal Non-Tilted Images, Noisy Non-Tilted Images, and Tilted Images respectively. The overall Average Recognition Rate for the data of 110 images is computed as 91.51%. The proposed algorithm is fully automatic and requires no human intervention. The proposed technique produces quite satisfactory results in terms of recognition and efficiency.




Sarfraz, M. (2015). An Intelligent Paper Currency Recognition System. In Procedia Computer Science (Vol. 65, pp. 538–545). Elsevier.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free