An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolytes

30Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

Nonaqueous redox flow batteries are a fast-growing area of research and development motivated by the need to develop lowcost energy storage systems. The identification of a highly conductive, yet selective membrane, is of paramount importance to enabling such a technology. Herein, we report the swelling behavior, ionic conductivity, and species crossover of lithiated Nafion 117 membranes immersed in three nonaqueous electrolytes (PC, PC : EC, and DMSO). Our results show that solvent volume fraction within the membrane has the greatest effect on both conductivity and crossover. An approximate linear relationship between diffusive crossover of neutral redox species (ferrocene) and the ionic conductivity of membrane was observed. As a secondary effect, the charge on redox species modifies crossover rates in accordance with Donnan exclusion. The selectivity of membrane is derived mathematically and compared to experimental results reported here. The relatively low selectivity for lithiated Nafion 117 in nonaqueous conditions suggests that new membranes are required for competitive nonaqueous redox flow batteries to be realized. Potential design rules are suggested for the future membrane engineering work.

Cite

CITATION STYLE

APA

Su, L., Darling, R. M., Gallagher, K. G., Xie, W., Thelen, J. L., Badel, A. F., … Brushett, F. R. (2016). An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolytes. Journal of the Electrochemical Society, 163(1), A5253–A5262. https://doi.org/10.1149/2.03211601jes

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free