Kallikrein Gene-Modified EPCs Induce Angiogenesis in Rats with Ischemic Hindlimb and Correlate with Integrin αvβ3 Expression

10Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: Human tissue kallikrein (hTK) plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs) transduced with the adenovirus-mediated hTK gene could improve blood flow in rat hindlimb ischemia in vivo and to establish a promising mechanism in vitro.<br /><br />METHODS: EPCs transduced with adenovirus encoding hTK-162 (i.e., Ad/hTK-transduced EPCs or Ad/GFP-transduced EPCs) were administered to Wister rats with hindlimb ischemia through therapeutic neovascularization. Muscular capillary density (MCD), blood flow (BF), and the number of myofibers were measured at days 7, 14, and 21 after treatment. Expressions of integrin αvβ3 and endothelial nitric oxide synthase (eNOS) were detected on the surface of EPCs.<br /><br />RESULTS: MCD, BF, and the number of myofibers in rats with Ad/hTK-transduced EPCs remarkably increased at day 21 after treatment compared with rats with Ad/GFP-transduced EPCs or the control group (P<0.01). Expressions of integrin αvβ3 and eNOS protein on the surface of EPCs also increased in rats with Ad/hTK-transduced EPCs. The levels of integrin αvβ3 expression were reduced by PI3K and eNOS blockade, and the inhibitor of integrin αvβ3 abrogated the migration and adhesion of hTK-transduced EPCs (P<0.05).<br /><br />CONCLUSION: hTK gene delivery in vivo improves the natural angiogenic response to ischemia. The ability of hTK gene-transduced EPCs can be enhanced in vitro, in which integrin αvβ3 plays a role in the process.

Cite

CITATION STYLE

APA

Fu, S. S., Li, F. J., Wang, Y. Y., You, A. B., Qie, Y. L., Meng, X., … Da Li, Q. (2013). Kallikrein Gene-Modified EPCs Induce Angiogenesis in Rats with Ischemic Hindlimb and Correlate with Integrin αvβ3 Expression. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0073035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free