A kinematic theory for radially foldable planar linkages

Citations of this article
Mendeley users who have this article in their library.


By using the algebraic locus of the coupler curve of a PRRP planar linkage, in this paper, a kinematic theory is developed for planar, radially foldable closed-loop linkages. This theory helps derive the previously invented building blocks, which consist of only two inter-connected angulated elements, for planar foldable structures. Furthermore, a special case of a circumferentially actuatable foldable linkage (which is different from the previously known cases) is derived from the theory. A quantitative description of some known and some new properties of planar foldable linkages, including the extent of foldability, shape-preservation of the interior polygons, multi-segmented assemblies and heterogeneous circumferential arrangements, is also presented. The design equations derived here make the conception of even complex planar radially foldable linkages systematic and straightforward. Representative examples are presented to illustrate the usage of the design equations and the construction of prototypes. The current limitations and some possible extensions of the theory are also noted. © 2007 Elsevier Ltd. All rights reserved.




Patel, J., & Ananthasuresh, G. K. (2007). A kinematic theory for radially foldable planar linkages. International Journal of Solids and Structures, 44(18–19), 6279–6298. https://doi.org/10.1016/j.ijsolstr.2007.02.023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free