Lateral diffusion in an archipelago. Dependence on tracer size

Citations of this article
Mendeley users who have this article in their library.


In a pure fluid-phase lipid, the dependence of the lateral diffusion coefficient on the size of the diffusing particle may be obtained from the Saffman-Delbrück equation or the free-volume model. When diffusion is obstructed by immobile proteins or domains of gel-phase lipids, the obstacles yield an additional contribution to the size dependence. Here this contribution is examined using Monte Carlo calculations. For random point and hexagonal obstacles, the diffusion coefficient depends strongly on the size of the diffusing particle, but for fractal obstacles--cluster-cluster aggregates and multicenter diffusion-limited aggregates--the diffusion coefficient is independent of the size of the diffusing particle. The reason is that fractals have no characteristic length scale, so a tracer sees on average the same obstructions, regardless of its size. The fractal geometry of the excluded area for tracers of various sizes is examined. Percolation thresholds are evaluated for a variety of obstacles to determine how the threshold depends on tracer size and to compare the thresholds for compact and extended obstacles. © 1993, The Biophysical Society. All rights reserved.




Saxton, M. J. (1993). Lateral diffusion in an archipelago. Dependence on tracer size. Biophysical Journal, 64(4), 1053–1062.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free