Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system

64Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This work aims at optimizing life cycle performance of a hybrid combined cooling heating and power (CCHP) system incorporating with solar energy and natural gas. A basic natural gas CCHP system containing power generation unit, heat recovery system, hybrid cooling system and storage tank, is integrated with solar photovoltaic (PV) and/or heat collector. LCA optimization methodology is proposed to optimize the configuration and variable load operation of the solar-assisted CCHP system to minimize the life cycle environmental impact. CCHP schemes in following electrical load (FEL) and following thermal load (FTL) strategies are optimized by different objectives respectively. Analysis and comparison are performed on life cycle environmental impacts caused by global warming potential, acidification potential and respiratory effect potential. The influences of main independent decision variables are discussed to discover the generic configuration rules for hybrid CCHP system. The results indicate that FTL strategy is superior to FEL strategy at taking the environmental compensation of surplus products from the hybrid CCHP system into consideration.

Cite

CITATION STYLE

APA

Wang, J., Yang, Y., Mao, T., Sui, J., & Jin, H. (2015). Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system. Applied Energy, 146, 38–52. https://doi.org/10.1016/j.apenergy.2015.02.056

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free