Linear-time algorithms for testing the realisability of line drawings of curved objects

20Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

This paper shows that the semantic labelling of line drawings of curved objects with piecewise C3 surfaces is solvable in linear time. This result is robust to changes in the assumptions on object shape. When all vanishing points are known, a different linear-time algorithm exists to solve the labelling problem. Furthermore, in both cases, all legally labelled line drawings of curved objects are shown to be physically realisable. However, when some but not all of the vanishing points are known, when the drawing is an orthographic projection of a scene containing parallel lines or when we wish to minimise the number of phantom junctions, the labelling problem becomes NP-hard. The introduction of collinearity constraints also renders the labelling problem NP-complete, except in the case when all vanishing points are known.

Cite

CITATION STYLE

APA

Cooper, M. C. (1999). Linear-time algorithms for testing the realisability of line drawings of curved objects. Artificial Intelligence, 108(1), 31–67. https://doi.org/10.1016/S0004-3702(98)00118-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free