Link prediction in complex networks: A mutual information perspective

Citations of this article
Mendeley users who have this article in their library.


Topological properties of networks are widely applied to study the link-prediction problem recently. Common Neighbors, for example, is a natural yet efficient framework. Many variants of Common Neighbors have been thus proposed to further boost the discriminative resolution of candidate links. In this paper, we reexamine the role of network topology in predicting missing links from the perspective of information theory, and present a practical approach based on the mutual information of network structures. It not only can improve the prediction accuracy substantially, but also experiences reasonable computing complexity.




Tan, F., Xia, Y., & Zhu, B. (2014). Link prediction in complex networks: A mutual information perspective. PLoS ONE, 9(9).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free