lmdme : Linear Models on Designed Multivariate Experiments in R

  • Fresno C
  • Balzarini M
  • Fernández E
Citations of this article
Mendeley users who have this article in their library.


The lmdme package decomposes analysis of variance (ANOVA) through linear models on designed multivariate experiments, allowing ANOVA-principal component analysis (APCA) and ANOVA-simultaneous component analysis (ASCA) in R. It also extends both methods with the application of partial least squares (PLS) through the specication of a desired output matrix. The package is freely available from Bioconductor and licensed under the GNU General Public License. ANOVA decomposition methods for designed multivariate experiments are becoming popular in"omics" experiments (transcriptomics, metabolomics, etc.), where measurements are performed according to a prede ned experimental design, with several experimental factors or including subject-specic clinical covariates, such as those present in current clinical genomic studies. ANOVA-PCA and ASCA are well-suited methods for studying interaction patterns on multidimensional datasets. However, currently an R implementation of APCA is only available for Spectra data in the ChemoSpec package, whereas ASCA is based on average calculations on the indices of up to three design matrices. Thus, no statistical inference on estimated effects is provided. Moreover, ASCA is not available in an R package. Here, we present an R implementation for ANOVA decomposition with PCA/PLS analysis that allows the user to specify (through a fexible formula interface), almost any linear model with the associated inference on the estimated effects, as well as to display functions to explore results both of PCA and PLS. We describe the model, its implementation and two high-throughput microarray examples: one applied to interaction pattern analysis and the other to quality assessment.




Fresno, C., Balzarini, M. G., & Fernández, E. A. (2015). lmdme : Linear Models on Designed Multivariate Experiments in R . Journal of Statistical Software, 56(7). https://doi.org/10.18637/jss.v056.i07

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free