Lung {Cancer} {Survivability} {Prediction} based on {Performance} {Using} {Classification} {Techniques} of {Support} {Vector} {Machines}, {C}4.5 and {Naive} {Bayes} {Algorithms} for {Healthcare} {Analytics}

  • R P
  • C N
N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Healthcare Analytics(HcA) is a process in which clinical data is analyzed and patient’s treatment is performed. The treatment depends on the analysis of clinical data accumulated from Electronic Health Records (EHRs), pharmaceutical and research and development cost and claims of patient. Lung cancer is the most common among cancer disease and the foremost reason for deaths in both men and women. In this research work EHRs are analyzed and the survivability rate is predicted for lung cancer. Researchers apply Machine Learning Techniques (MLT)for predicting the survivability rate so that chemotherapy can be provided for cancer affected people. MLTare well accepted by doctors and work well in diagnosing and predicting cancer. An ensemble of Support Vector Machine (SVM), Naive Bayes (NBs)and classification trees (C4.5) can be used to evaluate patterns that are risk factors for lung cancer study. The North Central Cancer Treatment Group (NCCTG) lung cancer data set along with new patient data is used for evaluating the performance of support SVM, NBs and C4.5. The comparison isbased on accuracy, Area Under the Curve(AUC), Receiver Operating Characteristic (ROC) and the resultshows that C4.5 performs better in predicting lung cancer with the increase in training data set.

Author supplied keywords

Cite

CITATION STYLE

APA

R, P. K., & C, N. N. (2018). Lung {Cancer} {Survivability} {Prediction} based on {Performance} {Using} {Classification} {Techniques} of {Support} {Vector} {Machines}, {C}4.5 and {Naive} {Bayes} {Algorithms} for {Healthcare} {Analytics}. Procedia Computer Science, 132, 412–420. https://doi.org/https://doi.org/10.1016/j.procs.2018.05.162

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free