The mammalian kinetochore–microtubule interface: robust mechanics and computation with many microtubules

0Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

The kinetochore drives chromosome segregation at cell division. It acts as a physical link between chromosomes and dynamic microtubules, and as a signaling hub detecting and processing microtubule attachments to control anaphase onset. The mammalian kinetochore is a large macromolecular machine that forms a dynamic interface with the many microtubules that it binds. While we know most of the kinetochore's component parts, how they work together to give rise to its robust functions remains poorly understood. Here we highlight recent findings that shed light on this question, driven by an expanding physical and molecular toolkit. We present emerging principles that underlie the kinetochore's robust microtubule grip, such as redundancy, specialization, and dynamicity, and present signal processing principles that connect this microtubule grip to robust computation. Throughout, we identify open questions, and define simple engineering concepts that provide insight into kinetochore function.

Cite

CITATION STYLE

APA

Long, A. F., Kuhn, J., & Dumont, S. (2019, October 1). The mammalian kinetochore–microtubule interface: robust mechanics and computation with many microtubules. Current Opinion in Cell Biology. Elsevier Ltd. https://doi.org/10.1016/j.ceb.2019.04.004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free