Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles

17Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

The intranasal administration of proteins using nanoparticles is a promising approach for several applications, especially for mucosal vaccines. Delivery of protein within the epithelial barrier is a key point to elicit an immune response and nano-carrier has to show no toxicity. The aim of this work was to elucidate the interactions of cationic porous nanoparticles loaded with protein delivery for antigen delivery in the nose. We investigated the loading, the cellular delivery and the epithelial transcytosis of proteins associated to these nanoparticles containing an anionic lipid in their core (NPL). NPL were highly endocytosed by airway epithelial cells and significantly improved the protein delivery into the cell. In vitro transcytosis studies showed that NPL did not modify the in vitro epithelial permeability suggesting no toxicity of these carriers. Moreover protein and NPL did not translocate the epithelial barrier. In vivo studies demonstrated that NPL prolonged the nasal residence time of the protein and no NPL were found beyond the epithelial barrier in vivo, precluding a negative side effect. All together these results establish the NPL as a bio-eliminable and optimal vaccine carrier.

Cite

CITATION STYLE

APA

Bernocchi, B., Carpentier, R., Lantier, I., Ducournau, C., Dimier-Poisson, I., & Betbeder, D. (2016). Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. Journal of Controlled Release, 232, 42–50. https://doi.org/10.1016/j.jconrel.2016.04.014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free