Citations of this article
Mendeley users who have this article in their library.


In order to investigate the mechanism by which oligodendrogliomas cause neuronal damage, media conditioned by G26/24 oligodendroglioma cells, were fractionated into shed vesicles and vesicle-free supernatants, and added to primary cultures of rat fetal cortical neurons. After one night treatment with vesicles, a reproducible, dose-dependent, inhibitory effect on neurite outgrowth was already induced and, after 48-72 h of incubation, neuronal apoptosis was evident. Vesicle-free supernatants and vesicles shed by NIH-3T3 cells had no inhibitory effects on neurons. Western blot analyses showed that treated neurons expressed a decreased amount of neurofilament (NF), growth-associated protein (GAP-43) and microtubule-associated protein (MAP-2). Moreover procaspase-3 and -8 were activated while Bcl-2 expression was reduced. Vesicles were found positive for the proapoptotic molecule, Fas-ligand (Fas-L), and for the B isoform of Nogo protein, a myelin component with inhibitory effects on neurons. Nogo B involvement in the vesicle effects was analyzed both by testing the neutralizing capability of anti-Nogo antibodies and by removing the Nogo receptor from neurons by phospholipase C digestion. These treatments did not revert the vesicle effects. To test the role of Fas-L, vesicles were treated with functional anti-Fas-L monoclonals. Vesicle inhibitory and proapoptotic effects were reduced. Vesicles shed by ovarian carcinoma cells (OvCa), which are known to vehicle biologically active Fas-L, had similar effects on neurons to those of oligodendroglioma vesicles, and their inhibitory effects were also reduced by anti Fas-L antibodies. We therefore conclude that vesicles shed by G26/24 cells induce neuronal apoptosis at least partially by a Fas-L mediated mechanism.




D’Agostino, S., Salamone, M., Di Liegro, I., & Vittorelli, M. L. (2006). Membrane vesicles shed by oligodendroglioma cells induce neuronal apoptosis. International Journal of Oncology, 29(5), 1075–1085.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free