Micromechanical modelling and simulation of chopped random fiber reinforced polymer composites with progressive debonding damage

47Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

The aim of the present paper is to provide a quantitative prediction of the elastic-damage behaviour of randomly oriented fiber polymer composites. A constitutive model based on micromechanical considerations is presented. The nucleation and growth of voids induced by progressive fiber debonding is combined with the constitutive relationship. Failure resulting of excessive damage accumulation is captured by a critical void volume criterion and a vanishing element technique. Experimentally, damage accumulation in random glass fiber-polyester composites was monitored by a videoextensometry technique able to control the local strain rate. Good agreement of model predictions with experimental data is pointed out. The model was implemented into a finite element program and numerical applications on composite structures (a tensile specimen and a plate containing a central hole) are presented to illustrate the capability of the approach. Digital image correlation method was also used to measure the full-field strain in a notched specimen under tensile loading. The simulated results compared favourably with those obtained from experiments. © 2008 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J. M., Bouaziz, A., & Lefebvre, J. M. (2008). Micromechanical modelling and simulation of chopped random fiber reinforced polymer composites with progressive debonding damage. International Journal of Solids and Structures, 45(20), 5220–5236. https://doi.org/10.1016/j.ijsolstr.2008.05.013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free