Migration and function of a glial subtype in the vertebrate peripheral nervous system

209Citations
Citations of this article
138Readers
Mendeley users who have this article in their library.

Abstract

Glia-axon interactions are essential for the development and function of the nervous system. We combine in vivo imaging and genetics to address the mechanism by which the migration of these cells is coordinated during embryonic development. Using stable transgenic lines, we have followed the migration of one subset of glial cells and their target axons in living zebrafish embryos. These cells coalesce at an early stage and remain coupled throughout migration, with axons apparently pathfinding for glia. Mutant analysis demonstrates that axons provide instructive cues that are sufficient to control glial guidance. Furthermore, mutations in the transcription factor Sox10/cls uncouple the migration of axons and glia. Finally, genetic ablation of this glial subtype reveals an essential role in nerve fasciculation.

Cite

CITATION STYLE

APA

Gilmour, D. T., Maischein, H. M., & Nüsslein-Volhard, C. (2002). Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron, 34(4), 577–588. https://doi.org/10.1016/S0896-6273(02)00683-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free