Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression

20Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

In the recent past Artificial Neural Networks (ANN) have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC) along with two other data driven techniques namely Model Tree (MT) and Non-linear Regression (NLR). Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data). The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.

Cite

CITATION STYLE

APA

Deshpande, N., Londhe, S., & Kulkarni, S. (2014). Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. International Journal of Sustainable Built Environment, 3(2), 187–198. https://doi.org/10.1016/j.ijsbe.2014.12.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free