Modeling and sensitivity analysis of transport and deposition of radionuclides from the fukushima dai-ichi accident

7Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

<p><strong>Abstract.</strong> The atmospheric transport and ground deposition of radioactive isotopes <sup>131</sup>I and <sup>137</sup>Cs during and after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident (March 2011) are investigated using the Weather Research and Forecasting-Chemistry (WRF-Chem) model. The aim is to assess the skill of WRF in simulating these processes and the sensitivity of the model's performance to various parameterizations of unresolved physics. The WRF-Chem model is first upgraded by implementing a radioactive decay term into the advection–diffusion solver and adding three parameterizations for dry deposition and two parameterizations for wet deposition. Different microphysics and horizontal turbulent diffusion schemes are then tested for their ability to reproduce observed meteorological conditions. Subsequently, the influence of emission characteristics (including the emission rate, the gas partitioning of <sup>131</sup>I and the size distribution of <sup>137</sup>Cs) on the simulated transport and deposition is examined. The results show that the model can predict the wind fields and rainfall realistically and that the ground deposition of the radionuclides can also be captured reasonably well. The modeled precipitation is largely influenced by the microphysics schemes, while the influence of the horizontal diffusion schemes on the wind fields is subtle. However, the ground deposition of radionuclides is sensitive to both horizontal diffusion schemes and microphysical schemes. Wet deposition dominated over dry deposition at most of the observation stations, but not at all locations in the simulated domain. To assess the sensitivity of the total daily deposition to all of the model physics and inputs, the averaged absolute value of the difference (AAD) is proposed. Based on AAD, the total deposition is mainly influenced by the emission rate for both <sup>131</sup>I and <sup>137</sup>Cs; while it is not sensitive to the dry deposition parameterizations since the dry deposition is just a minor fraction of the total deposition. Moreover, for <sup>131</sup>I, the deposition is moderately sensitive (AAD between 10 and 40% between different runs) to the microphysics schemes, the horizontal diffusion schemes, gas-partitioning and wet deposition parameterizations. For <sup>137</sup>Cs, the deposition is very sensitive (AAD exceeding 40% between different runs) to the microphysics schemes and wet deposition parameterizations, but moderately sensitive to the horizontal diffusion schemes and the size distribution.</p>

Cite

CITATION STYLE

APA

Hu, X., Li, D., Huang, H., Shen, S., & Bou-Zeid, E. (2014). Modeling and sensitivity analysis of transport and deposition of radionuclides from the fukushima dai-ichi accident. Atmospheric Chemistry and Physics, 14(20), 11065–11092. https://doi.org/10.5194/acp-14-11065-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free