Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers

  • Al-Sabagh A
  • Taha E
  • Kandil U
  • et al.
Citations of this article
Mendeley users who have this article in their library.


© 2016 by the authors; licensee MDPI, Basel, Switzerland. In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.




Al-Sabagh, A., Taha, E., Kandil, U., Nasr, G.-A., & Reda Taha, M. (2016). Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers. Nanomaterials, 6(9), 169.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free